AIプログラミングとは?学習しやすい言語や手順、簡単に開発するポイントを紹介

「AIプログラミングの基本が知りたい」 「AIプログラミングに適した言語とは?」 この記事では、AIプログラミングの概要を説明し、企業がAIプログラミングを行うメリットを解説。そしてAI開発における5種類の主要なプログラミング言語の比較・解説を行います。 その後AIプログラミング言語の選び方や、AI開発までの流れを説明します。 AI開発やプログラミング、データサイエンスなどの専門的な知識がない人にも分かりやすいよう、専門用語は極力使わずに説明。専門用語を使う場合は、必ず解説を加えます。

アバター画像
監修者 金さん

北海道大学理学部数学科確率論専攻。 地方都市に居住していて、プロジェクトのテックリードを努めたりする傍ら、中小企業のDX支援なども積極的に行う。 後進に知識を伝えるべくライティング業務をしている。

\エキスパートが回答!/
この記事に関する質問はこちら
記事に関するご質問以外にも、システム開発の依頼やAIの導入相談なども受け付けております。

    会社名必須
    必須
    必須
    Eメール必須
    電話番号必須
    ご依頼内容必須

    AIプログラミングとは?

      端的に表現すると、AIプログラミングとはAIを開発するためのプログラミングのことです。 このセクションでは以下の3点について解説し、AIプログラミングの概要を把握。そしてAI開発に適したプログラミング言語について説明していきます。

    AIとは

    そもそもAIとは何なのでしょうか。 結論から言うと、AIには明確な定義が存在しません。「Artificial Intelligence」の略称であるAIは、直訳すると「人工知能」。人間に似た知能を作り出し、あたかも人間のような処理を行わせるための技術全般を指します。 近年AIが話題となっているのは、「機械学習」という分野の「ディープラーニング」と呼ばれる技術の発展によるものです。「ニューロンネットワーク」という人間の脳の細胞組織に似た機構を利用し、用意したデータを機械が学習する仕組みがディープラーニングなのですが、これによってAIが飛躍的に発達しました。 ChatGPTなどの生成AIや、画像や動画の自動生成、またプログラミングの自動化なども、飛躍的に発展したディープラーニング技術によるものです。

    プログラミングとは

    プログラミングとは、コンピュータに思い通りの処理を実行させることことです。簡単な情報の追加・変更から、コンピュータにしか出来ない複雑な計算まで、あらゆる情報の処理を行わせることを指します。 今日では様々なプログラミング言語が登場し、その数は数百種類に及びます。ただしそれぞれ得意な処理が異なっており、全てのプログラミング言語でAI開発ができるわけではありません。 AI開発に適したプログラミング言語には、
    • AIプログラミングのための機能が実装されていたり、使用できる部品にAIプログラミングに特化した部品があったりする
    • 膨大な量のデータを処理する能力に長けていて、複雑なデータ処理を簡単に記述できる
    などの特徴があります。 AI開発におすすめのプログラミング言語や選び方のポイントは、以下のセクションで詳しく説明していきます。

    AIプログラミングは企業にとって必要か?

    AIの発展には目覚ましいものがあり、多くの分野・業界においてAIが活用され始めています。 特に多くの企業が関心を向けているのは、AIを用いた業務の自動化。業務内容に適したAIを開発することで、手動では多くの時間とコストを必要とする作業を自動化することができます。 例えば、膨大なデータの分析や処理、あるいはルーチンワークとなっている単純作業の解消です。プログラムでは処理しきれず、多くの人員を割いて行っている業務も、AIを用いれば自動化できる場合があります。 目的に沿ったAIが開発できれば、大幅なコストの削減や生産性の向上、そして自社製品・サービスの品質向上に繋がります。自社に合わせたAIを開発することは、企業に様々なメリットをもたらします。

    AI開発におすすめのプログラミング言語

    このセクションではAI開発におすすめのプログラミング言語を紹介・解説します。一覧表で5種類のプログラミング言語を比較し、その後それぞれの言語の詳しい解説を行っていきます。 一覧表で比較しているのは、まず言語の習得難易度AI開発との相性について。そしてAI開発では大量のデータを扱うため、データ解析能力計算速度についての比較も行っています。 ★の数が多いほど難度が易しく、相性・性能が良いことを表しています。
    習得難易度 AI開発との相性 データ解析能力 計算速度
    Python ★★★☆☆ ★★★★★ ★★★★☆ ★★★☆☆
    C++ ★☆☆☆☆ ★★★☆☆ ★★☆☆☆ ★★★★★
    Julia ★★★★☆ ★★★★★ ★★★☆☆ ★★★★☆
    R言語 ★★☆☆☆ ★★★★☆ ★★★★★ ★★☆☆☆
    JavaScript ★★★☆☆ ★★★☆☆ ★☆☆☆☆ ★★★☆☆
    関連記事
    AI開発に適したプログラミング言語は?特徴や難易度、選び方から将来性までわかりやすく解説
    AI開発に適したプログラミング言語は?特徴や難易度、選び方から将来性までわかりやすく解説

    Python

    近年のAI開発において、最も人気のプログラミング言語であるPythonソースコードがシンプルで可読性が高く、初めてプログラミング言語を学ぶ人にも取り組みやすい言語です。またAIプログラミングのための機能が豊富に提供されているため、AI開発に取り組みやすい言語でもあります。 AI開発の分野で広く使用される言語であるため、コミュニティでの情報が充実しているのもPythonを選ぶ大きなメリットです。
    関連記事
    【入門】AI開発にPythonが使われる理由や学習方法、ライブラリもわかりやすく紹介!
    【入門】AI開発にPythonが使われる理由や学習方法、ライブラリもわかりやすく紹介!

    C++

    C言語から派生したプログラミング言語であるC++は、主にデスクトップアプリや基盤システムに利用されてきました。 処理速度は高速。ゲームの開発や、AI開発にも広く使われています。 ただしAI開発のための機能はほとんど実装されておらず、習得の難易度は高め。もともとのC++の学習難易度もかなり高くなっています。AIプログラミングとC++の扱いに慣れた人におすすめの言語となります。
    関連記事
    C++言語でできることとは?自社のどんな開発に活かせるのか事例をもとに徹底紹介
    C++言語でできることとは?自社のどんな開発に活かせるのか事例をもとに徹底紹介

    Julia

    2012年に登場したJuliaは、他の言語の長所を合わせ持ったプログラミング言語として注目を集めています。 R言語の統計・データ解析能力と、Pythonに似たシンプルなコーディング。そしてC++に迫る処理速度を誇ります。AI開発との相性も良く、PythonやR言語の機能もJuliaから使えるなど、多くのメリットが存在します。 ただし、比較的歴史が浅い言語であるため、Juliaを用いたAI開発のコミュニティはまだまだ発展途上である点に注意が必要です。

    R言語

    統計学・データサイエンスの分野で広く利用されているR言語。特にデータの解析能力に優れているため、AIを用いて高度なデータ解析を行いたい場合におすすめの言語です。 グラフィック処理も得意であり、データを視覚的に分かりやすく表現するための機能が備わっています。 習得難易度は高めで、使いこなすには統計学・データサイエンスに関する知識を必要とします。
    関連記事
    R言語とは?オワコンって本当?メリットやデメリット、特徴やPythonとの違いなどわかりやすく紹介!
    R言語とは?オワコンって本当?メリットやデメリット、特徴やPythonとの違いなどわかりやすく紹介!

    JavaScript

    Webシステム開発を始めとする、広いジャンルで使用されるプログラミング言語のJavaScript。非常に汎用性が高く、近年ではAIプログラミングにもJavaScriptが利用され始めています。
    関連記事
    【完全入門】JavaScriptを習得できる初心者向けの本や講座を紹介!htmlやcssとの違いも解説!
    【完全入門】JavaScriptを習得できる初心者向けの本や講座を紹介!htmlやcssとの違いも解説!

    AIプログラミング言語を選ぶポイントは?

    このセクションでは、AIプログラミング言語を選ぶポイントを解説していきます。重要なポイントは、大きく分けて以下の4点です。
    • 言語がAIプログラミングの分野でメジャーか、構文が分かりやすいか
    • 学習に必要とするコスト(習得の難易度・教材の多さ)
    • 言語が使いたいフレームワークに対応しているかどうか
    • 言語の将来性
    それぞれ詳しく見ていきましょう。

    メジャーで分かりやすい構文の言語

    AIプログラミング言語を選ぶ大切なポイントとして、普及率の高さが挙げられます。 目的が似たAIが数多く作成されている場合、AI作成のノウハウが固まり、コミュニティで共有されている場合が多いです。そのため、同じプログラミング言語であれば、そのノウハウを比較的容易に取り入れることができます。 既にロールモデルが存在していれば、新たにAI開発に取り組む場合でもリスクヘッジが可能。また分かりやすく、使用率の高い言語であれば、開発・メンテナンスに関わる人員を補充しやすいというメリットもあります。

    学習コストが低い言語

    学習コストが低いかどうかも重要です。 プログラミング言語には、明らかに学習コストの差があります。分かりやすい構文以外にも、特有のデータ構造が簡易的か煩雑か、システム全体の作り方が簡易的にできるのか煩雑になるのかなどの差がとてもある分野です。 言語によっては、日本ではまだあまり普及していなくて、日本語の学習教材が少なく、日本語のWeb講座なども存在しない場合があります。 AIそのものの学習にもコストがかかるので、プログラミング言語に余計なコストをかけるのは避けたいところです。特にプログラミング初心者の場合、最初は学習コストが低い言語から選ぶことをおすすめします。

    使いたいフレームワークに対応したプログラミング言語

    利用したい「フレームワーク」に対応しているかどうかも、プログラミング言語を選ぶ際の大切なポイントです。 フレームワークとは、特定の開発を行う際に必要な機能が、あらかじめ用意されている枠組みを指します。例えばAI開発を行う際に必要な機能が備わっていたり、あるいは開発の一部を省略できるなど、フレームワークの使用は大きなメリットをもたらします。 1つのフレームワークを複数の言語が使用できることは珍しくありません。AIプログラミングの分野でも、人気のフレームワークである「TensorFlow」に対して、PythonやR言語、JuliaやJavaScriptなど多くの言語が対応しています。 しかし開発に利用したいフレームワークに、少数の言語しか対応してない場合も存在します。そのため開発の目的が明確に決まっている場合は、必要なフレームワークを調査し、そのフレームワークに対応しているかどうかの確認も必要です。

    言語の将来性

    最後のポイントは、言語の将来性です。 そのプログラミング言語が、AI開発で広く使用される可能性は高いか。特に自社業務と親和性が高い分野において、将来性はどうか。 そのため、現在のプログラミング言語の使用率だけでなく、将来性の高さも言語を選ぶ1つの基準となります。
    関連記事
    【2024年最新版】WEB開発のトレンドはコレ!言語やフレームワーク、デザインなどまとめて解説
    【2024年最新版】WEB開発のトレンドはコレ!言語やフレームワーク、デザインなどまとめて解説

    AIによるプログラミングでプログラマーの仕事はなくなる?

    AI開発が目覚ましい進展を遂げた2000年代から、AIが多くの職業を無くすと言われるようになりました。その職業の1つがプログラマーです。 そして実際、AIによる自動プログラミングの開発は進んでいます。そう遠くない未来、単純なコーディングはAIが担う時代になります。というよりも、今現在半ばそのような時代になっています。 ただしAIが、プログラマーの現在の仕事全てを行えるようになるためには、何十年単位での時間が必要だと言えます。 熟練のプログラマーが多くの時間と労力を必要とするシステム設計。また創造力を求められる問題の解決は、当面の間AIには難しいと考えられています。 このセクションでは、AIにも可能な業務と、人間のプログラマーにしかできない業務の例を紹介しています。

    プログラマーにしかできない仕事

    現状のAIは、「考える」ことができません。 「真似する」ことしかできません。 これはつまり、AIは、 「新しいものを創造できない」 ことを示しています。 またAIは、人間とリアルな会話はできません。
    • 新規プロダクトのプログラム構成の全体立案
    • 顧客との調整による仕様的な判断が加味される部分のプログラミング
    • まさにAIを進化させるなどの研究要素があるプログラミング
    などは、引き続きプログラマーの業務として残存すると考えられます。 いわば、プログラマーは、コーディングをする人から、全体の監督をする人になっていくわけですね。 またAIが判断・出力した結果が本当に正しいかも、最終的には人間が判断する必要があります。よほど単純な作業でない限り、100%の正確性を誇るAIの開発は難しいです。

    AIの活用に適した仕事

    今は生成AIもあるので、プログラマーはAIを活用しています。 同じような部品を生成させること、スペルのチェック、細かな部分のケアレスミスのチェックなどにAIを活用しています。 AIは機械なので、そういった作業は人間より正確で、速いです。さらに疲れません。 ルーチンワークはAIを活用しているわけですね。 また、データ解析の補助にもAIを活用しています。 アンケートデータの下処理など、AIがやってくれるデータ解析の補助業務は無数にあります。 解析結果を吟味するのは人間の仕事ですが、下処理はすべてAIにおまかせするわけです。そもそもAIが開発された目的はそこにありますし。 このおかげで、人間は膨大なデータを活用することが可能になりました。 最近のAIは画像の変換、会議の議事録の文字起こしなどもできるので、下働きの仕事に人間の労力を割くことがだんだん少なくなっています。 そうやって下働きにAIを活用することで、より高度なタスクに人間は時間を割けるようになりました。

    AIプログラミングの開発手順

    このセクションでは、AI開発を行う手順を4段階に分けて解説していきます。
    • AIの開発目的を明確に設定
    • AI・プログラミング・数学など必要な知識の学習
    • フレームワーク・ライブラリを調査・利用
    • AIプログラミングの実行
    それぞれの段階を詳しく見ていきましょう。

    AIの開発目的を明確にする

    まず一番大切なことは、AIに何をして欲しいのか、開発目的をできるだけ具体的に設定することです。 AIにやらせることを具体的に設定することで、AIにどのような機能が必要なのか。そしてそのAI開発にはどのような知識とスキル、開発環境が必要なのか整理します。 目的が明確でないと、必要な知識やスキル、環境が正確に把握できません。以降のプロセスを効率的に進めるためにも、AIにやらせたいことは明確にしておきましょう。 その後、目的に対してどのプログラミング言語が適しているのか、調査・検討を行います。

    AI・プログラミング・数学などを学習する

    作成するAIの目的を設定したら、必要な知識を学習するプロセスに移ります。 AI開発に関する知識や、使用するプログラミング言語の学習。さらに数学・統計学などの基礎的な知識を必要とする場合があります。必要に応じて学習していきましょう。 数学・統計学の学習は多少難易度が高めです。しかし、多くのAI開発において、数学・統計学などで必要とする知識は基礎的なものが多くなっています。AI開発の教材・講習などで合わせて学習できる機会も多いため、しっかりと学んでおくことをおすすめします。

    フレームワーク・ライブラリを活用する

    AIプログラミングはもちろん、システム開発ではフレームワークと「ライブラリ」を最大限に活用することで、開発を効率よく進めることができます。 フレームワークを「必要な機能があらかじめ用意された枠組み」であると説明しましたが、ライブラリは開発を効率的に進める1つの機能のことを指します。フレームワークが開発の枠組みを組み立て、ライブラリはその枠組みの中で働く1つのパーツ、とイメージすると分かりやすいかもしれません。 AI開発に向けたフレームワークとライブラリを活用することで、少ないコスト・時間でAIの開発を行うことができます。 以下ではAIプログラミングにおいて代表的なフレームワークである「TensorFlow」と「PyTorch」。そして代表的なライブラリの「NumPy」と「pandas」について解説します。

    フレームワーク:TensorFlow・PyTorch

    Googleが開発したオープンソースのフレームワークであるTensorFlow。高い汎用性と柔軟性を持ち合わせ、ビッグデータのような膨大なデータを扱うのも得意です。 また「TensorFlow 2」からは、Google社員が開発した「Keras」というフレームワークが搭載され、短いソースコードでもAI開発が行えるようになりました。 一方でPyTorchは、Facebookが提供するオープンソースのフレームワーク。大きな特徴として、構文がわかりやすく、ソースコードの可読性が高いことが挙げられます。可読性の高さは、開発時だけでなく、保守・運用の際にも重要です。 またPythonの拡張ライブラリでもあるNumPyと操作が似ていることから、Pythonユーザーにとっては習得のハードルが低いフレームワークであると言えます。

    ライブラリ:NumPy・pandas

    NumPy・pandasとは、プログラミング言語・Pythonの拡張ライブラリです。 NumPyは数値計算を行う際に利用するライブラリで、多次元配列というデータ型に対する操作が柔軟。なおかつ計算は高速です。AI開発においては、数多くの数値を多次元的に計算しなくてはなりませんが、NumPyによって効率的に処理することができます。PythonがAI開発で人気の理由の1つは、AI開発に適したライブラリであるNumPyがあるからだと言われています。 pandasはデータ解析を容易にするライブラリです。従来なら手間がかかっていたデータ処理でも、簡易的な命令で処理することができます。大量のデータを処理する必要のあるAI開発において重要なツールです。

    AIプログラミングを行う

    学習が完了したら、AI開発を開始します。 開発を始めた後に、多くの不明点・トラブルが生まれる場合があります。学習した内容を振り返っても解決法が分からない際は、AI開発のコミュニティに情報がないか、探してみてください。 またAIが完成した後も、AIシステムをしっかりと運用し、変化に対応させる等のメンテナンスや改善を続ける必要があります。

    AIプログラミングを簡単にするポイント

    ここまでAIプログラミングについて紹介してきました。 なんだか難しそうだな、私でもできるのかなと思った方もいるのではないでしょうか? 大丈夫、AIプログラミングにもコツがあり、簡単に習得する方法、プログラミング自体を簡単に行う方法は存在します。 それらの方法のポイントを紹介します。

    初心者向けのツールやフレームワークを活用

    AIプログラミングは、大学生が講義の一環で行うほどです。 大学生は社会人経験もなく、プログラミング初心者がほとんどです。 AIプログラミングにも初心者向けのツールやフレームワークがあります。 それこそ大学生でもプログラムが組めるようなツールです。 本格的に取り組めば難易度の高い概念が様々出てくるAIプログラミングですが、初心者向けのツールも整備されているのです。 一例として、Pythonのライブラリの一つであるpycaretは、極めて平易にAIを作れるツールです。 難しいことを考えずとも、pycaretのデフォルト設定を使用すればなんとなくAIになってしまいます。 最初はこのようなツールから取り組むとよいでしょう。

    チュートリアルやサンプルコードを利用

    Web上には多数のAIプログラミングのチュートリアルが公開されています。日本語のものだけでもかなりの数に上ります。 また、そういったチュートリアルや記事などには、サンプルコードが掲載されている場合がほとんどです。中にはパラメータの値を変えるだけで手元で動かせる精度の高いサンプルコードもあります。 初めはそのようなサンプルコードを改造するところから始めてみましょう。 プログラムの書き方も理解でき、習得コストも低いので、簡単にAIプログラミングが始められます。

    オンラインコミュニティに参加

    「一人では挫けそうだな・・・」 そう思ったら、ネット上にあるAIプログラミングのオンラインコミュニティへの参加を検討しましょう。 エンジニアはたいてい初心者に親切なので(理由は分かりませんが、IT業界にいると、後輩から「先輩が親切なので働きやすい」という声はよく聞きます)、親切に教えてくれますよ。 費用もほとんどかからない場合が多くなっています。 何より、一緒に打ち込む仲間がいると、習得に張り合いが出ます。

    AIを使ったシステム開発を行う日本企業、Jiteraとは

    Jitera社はソフトウェア開発を行っているIT企業です。2017年の設立後、スピーディで質の高い開発を続け、プライム企業をはじめとした多数の企業で開発実績があります。グローバル開発を積極的に行っており、海外エンジニアが多数在籍。社内の公用語は英語です。 しかし、もちろん社外の打ち合わせや相談に関しては日本語で対応。コミュニケーションに重きを置いているため、満足度の高い・高品質な開発が可能です。 Jitera社の開発の魅力は、圧倒的な”コストパフォーマンスの高さ”。 開発スピードとコスト、品質。そして綿密なコミュニケーションを総合し、他社とは一線を画す質の高さが特徴的です。 高いコスパを実現できる理由は、開発自動化プラットフォーム「JITERA」の導入。そしてスクラッチ開発を組み合わせた、ハイブリット型のアジャイル開発を行っているためです。 開発自動化プラットフォーム・JITERAは、Jitera社が開発した開発支援・自動化ツールです。 開発自動化ツール・JITERAの使用により、フルスクラッチ開発と比べて大幅に開発時間を短縮しています。

    まとめ:AIプログラミングは専門知識が必要

    この記事ではAIプログラミングの概要を説明し、AIプログラミングに適した5種類のプログラミング言語の比較・解説をしてきました。 R言語やPythonが、AI開発における主流の開発言語でした。しかし近年、Juliaなど比較的若い言語もAI開発で使われ始め、さらにWeb開発で人気の言語・JavaScriptもAI分野で使用されるようになってきました。 AI開発の言語を選ぶ際の重要なポイントは、事前に開発の目的を明確に設定しておくことです。そして目的を実現するために最適な言語を、調査・検討します。 途中で言及したように、AIプログラミングは初心者でも挑戦できます。本格的な専門知識が少なくてもAIを開発することは可能です。その際も、適切な言語・ツールを選択するようにしてください。 とは言え、やはりAIを活用した開発には専門知識が必要です。AIを活用した開発は、そういったことが得意な会社に一任するのも一考でしょう。JiteraであればAIを活用した開発が得意です。実績豊富な株式会社Jiteraに一度ご相談ください。相談内容に沿った、的確なアドバイスが期待できます。

    例:開発手順、ツール、プロンプト

    メルマガ登録

    社内で話題になった「生成AIに関するニュース」をどこよりも早くお届けします。